首页 | 本学科首页   官方微博 | 高级检索  
     

单摆周期近似公式的数值优化
引用本文:鞠衍清,张风雷. 单摆周期近似公式的数值优化[J]. 辽东学院学报(自然科学版), 2011, 0(2): 159-163
作者姓名:鞠衍清  张风雷
作者单位:1. 辽东学院机电学院,辽宁丹东,118003
2. 辽东学院实验中心,辽宁丹东,118003
基金项目:辽宁省教育厅科研计划项目
摘    要:运用MATLAB中的最小二乘曲线拟合方法,在[0,π/2]及[0,π]区间对现有单摆周期近似公式分别进行了数值修正,得到与原公式具有相同的形式但不同系数的修正公式.对原公式及修正后公式的方差和及相对误差进行了比较.结果表明,原近似公式的精确度得到了显著的改进.此外,作者发现,原公式及修正公式在[0,π/2]区间的近似程...

关 键 词:单摆  周期  MATLAB  非线性曲线拟合  最小二乘法

Approximate Simple Pendulum Period Formulae: Optimization in a Numerical Way
JU Yan-qing,ZHANG Feng-lei. Approximate Simple Pendulum Period Formulae: Optimization in a Numerical Way[J]. Journal of Liaodong University(Natural Sciences), 2011, 0(2): 159-163
Authors:JU Yan-qing  ZHANG Feng-lei
Affiliation:1.College of Mechanical and Electrical Engineering,Eastern Liaoning University,Dandong 118003,China;2.Experimental Center,Eastern Liaoning University,Dandong 118003,China)
Abstract:Approximate formulae of period of a simple pendulum with oscillation amplitude in and were optimized in a numerical way with the function of Lsqcurvefit in MATLAB.New formulae with the same forms as but different coefficients from the original ones were obtained correspondingly.The sums of squared difference and relative error of each original formula and its corresponding revised one with the exact value of the period of a simple pendulum were compared.The results show that every original formula has been remarkably improved.Furthermore,it is found that a formula(no matter it is an original one or a revised one) performs better inthan in.Besides,a formula that performs relatively better in is not necessarily better in,showing the dependence of the precision of a formula on the interval.
Keywords:simple pendulum  period  MATLAB  nonlinear curve fitting  least square method
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号