首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于聚类思想的SVM多类分类方法
引用本文:赵志刚,吕慧显,李玉景,李京. 一种基于聚类思想的SVM多类分类方法[J]. 青岛建筑工程学院学报, 2011, 0(1): 73-76
作者姓名:赵志刚  吕慧显  李玉景  李京
作者单位:[1]青岛大学信息工程学院,青岛266071 [2]青岛大学自动化工程学院,青岛266071 [3]湖北汽车工业学院电气工程系,十堰442002
摘    要:针对传统的基于决策树的支持向量机多类分类算法运算过程复杂、分类效率低的缺点,提出一种新的基于聚类思想的支持向量机分类方法.空间距离和聚类思想的引入,有效的提高了算法的分类效率.仿真试验表明,该方法在保持算法良好推广性的同时降低了算法的复杂度,从而提高了分类效率和分类速度.

关 键 词:支持向量机  多类分类  聚类思想  空间距离

A Multi-Classification SVM Based on Clustering Idea
ZHAO Zhi-ganga,LV Hui-xianb,LI Yu-jinga,LI Jing. A Multi-Classification SVM Based on Clustering Idea[J]. Journal of Qingdao Institute of Architecture and Engineering, 2011, 0(1): 73-76
Authors:ZHAO Zhi-ganga  LV Hui-xianb  LI Yu-jinga  LI Jing
Affiliation:1.a.College of Information Engineering;b.College of Automation Engineering,Qingdao University,Qingdao 266071,China;2.Department of Electric Engineering,Hubei Automotive Industries Institute,Shiyan 442002,China)
Abstract:Now that the original multi-classification SVM based on SVM-decision binary tree has low classification efficiency and its complicated operation,a multi-classification SVM based on clustering idea is presented in the paper.It improves the operation speed by employing the spatial distance and the clustering idea.The experimental results indicate that the new algorithm can not only keep the generalization capability but also improve the operation speed and classification efficiency.
Keywords:support vector machine  multi-classification  clustering idea  spatial distance
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号