首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进深度信念网络的直流XLPE电缆局部放电模式识别
摘    要:局部放电检测是评估电气设备运行状态的重要手段,然而现阶段关于直流交联聚乙烯(XLPE)电缆局部放电模式识别技术的研究尚在起步阶段。针对直流XLPE电缆的常见绝缘缺陷及局部放电特点,设计了4种缺陷模型并搭建实验平台采集局部放电信号,以局部放电脉冲波形为样本,研究了基于自适应矩估计优化算法改进深度信念网络的直流电缆局部放电模式识别方法。实验对比了深度信念网络模型与基于时频特征分类方法的识别效果,分析了识别方法对各类缺陷的适用性和训练样本容量对识别模型的影响。实验结果表明:基于改进深度信念网络的识别方法能深入挖掘局放脉冲的有效特征,识别准确率高于基于时频特征的支持向量机、BPNN神经网络分类方法,且对4类缺陷均具有良好的识别效果,识别准确率随训练样本容量的增多得到较大的提升。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号