首页 | 本学科首页   官方微博 | 高级检索  
     


Neuronal migration and differentiation in the development of the mouse dorsal cochlear nucleus
Authors:A Ivanova  S Yuasa
Affiliation:Laboratory of Neural Information, National Institute for Physiological Sciences, Okazaki National Research Institutes, Okazaki, Japan.
Abstract:The dorsal cochlear nucleus (DCN) of mammals displays a cortical structure containing a number of cell types organized into distinct layers. In the present study, the migratory mode of large multipolar cells and granule cells as well as the morphological differentiation of the projection neurons were investigated in the development of the mouse DCN. The classification of the DCN neurons followed that of Ryugo and Willard. The mode of neuronal migration was examined by immunohistochemical bromodeoxyuridine labeling. Large multipolar neurons originated from the primary rhombic lip and small granule cells from the secondary rhombic lip. Large multipolar neurons migrated radially from the ventricular zone into the forming DCN. Granule cells were generated later than the large multipolar neurons and migrated via the subependymal and subpial routes. Large multipolar neurons and small granule cells were thus segregated early in the DCN development and intermixed later during perinatal maturation. Projection neurons retrogradely labeled by DiI application to the contralateral inferior colliculus showed neurite extension between the pial surface and the ventricular zone during migration in the DCN primordium. The retrogradely labeled projection neurons showed a well-differentiated morphology of the large multipolar neurons as early as the late embryonic stage. The arrangement of the radial glial processes coincided with that of the migratory projection neurons. The migratory immature neurons showed close apposition with the radial glial processes, suggesting that glial scaffolds are involved in the migration and settlement of the large multipolar neurons. Thus, it is suggested that the mode of migration and settlement of large multipolar neurons and granule cells in the developing DCN is highly similar to that of Purkinje and granule cell migration in the cerebellar development, based on the findings of this study and the structural similarity between the cerebellum and DCN.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号