摘 要: | 针对不同类型心电(electrocardiogram,ECG)信号分类的不足,提出了一种基于改进深度残差网络(Resnet)的分类方法。首先对心电数据做可视化处理,使用格拉姆角场(Gramian angular fields,GAF)将一维的ECG信号转换为二维图像,然后对Resnet-50网络模型进行改进,在网络中添加多级shortcut支路,并优化了残差块;为了进一步提高模型的表达能力,将Relu激活函数替换为SELU激活函数;最后将图像输入到改进的残差网络中进行分类,并在医院对患者的心电信号进行了实际测试。实验结果表明:该算法对7类心电信号的平均识别率达到了98.3%,相对于原始的残差网络,准确率提升了2.9%;算法诊断结果与医生诊断结果一致,从而验证了算法的有效性和实用性。
|