Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE, the Atomic Pseudo-potentials Engine |
| |
Authors: | Micael J.T. Oliveira Fernando Nogueira |
| |
Affiliation: | Centre of Computational Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal |
| |
Abstract: | We present a computer package designed to generate and test norm-conserving pseudo-potentials within Density Functional Theory. The generated pseudo-potentials can be either non-relativistic, scalar relativistic or fully relativistic and can explicitly include semi-core states. A wide range of exchange-correlation functionals is included.Program summaryProgram title: Atomic Pseudo-potentials Engine (APE)Catalogue identifier: AEAC_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAC_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 88 287No. of bytes in distributed program, including test data, etc.: 649 959Distribution format: tar.gzProgramming language: Fortran 90, CComputer: any computer architecture, running any flavor of UNIXOperating system: GNU/LinuxRAM: <5 MbClassification: 7.3External routines: GSL (http://www.gnu.org/software/gsl/)Nature of problem: Determination of atomic eigenvalues and wave-functions using relativistic and nonrelativistic Density-Functional Theory. Construction of pseudo-potentials for use in ab-initio simulations.Solution method: Grid-based integration of the Kohn-Sham equations.Restrictions: Relativistic spin-polarized calculations are not possible. The set of exchange-correlation functionals implemented in the code does not include orbital-dependent functionals.Unusual features: The program creates pseudo-potential files suitable for the most widely used ab-initio packages and, besides the standard non-relativistic Hamann and Troullier-Martins potentials, it can generate pseudo-potentials using the relativistic and semi-core extensions to the Troullier-Martins scheme. APE also has a very sophisticated and user-friendly input system.Running time: The example given in this paper (Si) takes 10 s to run on a Pentium IV machine clocked at 2 GHz. |
| |
Keywords: | 71.15.-m 71.15.Dx 71.15.Mb 82.20.Wt |
本文献已被 ScienceDirect 等数据库收录! |
|