首页 | 本学科首页   官方微博 | 高级检索  
     


The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures
Authors:M Ben-Haroush  D Eliezer  L Wagner
Affiliation:a Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
b Institute of Materials Science and Engineering, TU Clausthal, Germany
Abstract:Cast AZ80 alloy was subjected to conventional extrusion pressing at 250 °C, 300 °C, and 350 °C. In order to characterize the changes in their microstructure a thorough study was done through various microscopy analyses including Optical Microscope, SEM, and TEM.Corrosion performance of each condition was investigated in 3.5% NaCl solution saturated with Mg(OH)2 (pH ≈ 10.5) using immersion and AC and DC polarization tests. The local potential difference on the surface resulting from different compositions of second phase particles to the matrix was investigated using scanning Kelvin probe force microscopy (SKPFM) technique.The results show grain refinement by a factor of about 15-20 and obvious evidence of dynamic recrystallization were identified leading to the formation of nano-sized grains after the extrusion process.The corrosion resistance of cast AZ80 alloy drastically decreases after the thermo-mechanical processes and the main factor is high dependence on different phase rearrangements before and after the extrusion process, especially β phase. For the extrusion conditions, different corrosion resistances are attributable especially to dislocation rearrangement results by grain growth after dynamic recrystallization.
Keywords:A  Magnesium  B  Polarization  B  TEM  C  Effects of strain
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号