首页 | 本学科首页   官方微博 | 高级检索  
     


Solution of few-body problems with the stochastic variational method II: Two-dimensional systems
Authors:Kálmán Varga
Affiliation:Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
Abstract:A computational approach is presented for efficient solution of two-dimensional few-body problems, such as quantum dots or excitonic complexes, using the stochastic variational method. The computer program can be used to calculate the energies and wave functions of various two-dimensional systems.

Program summary

Program title: svm-2dCatalogue identifier: AEBE_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBE_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 5091No. of bytes in distributed program, including test data, etc.: 130 963Distribution format: tar.gzProgramming language: Fortran 90Computer: The program should work on any system with a Fortran 90 compilerOperating system: The program should work on any system with a Fortran 90 compilerClassification: 7.3Nature of problem: Variational calculation of energies and wave functions using Correlated Gaussian basis.Solution method: Two-dimensional few-electron problems are solved by the variational method. The ground state wave function is expanded into Correlated Gaussian basis functions and the parameters of the basis states are optimized by a stochastic selection procedure. Accurate results can be obtained for 2-6 electron systems.Running time: A couple of hours for a typical system.
Keywords:31  15  Pf  61  46  -w  68  65  Hb  68  65  -k
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号