首页 | 本学科首页   官方微博 | 高级检索  
     

基于双支路特征融合的MRI颅脑肿瘤图像分割研究北大核心CSCD
引用本文:熊炜,周蕾,乐玲,张开,李利荣. 基于双支路特征融合的MRI颅脑肿瘤图像分割研究北大核心CSCD[J]. 光电子.激光, 2022, 0(4): 383-392
作者姓名:熊炜  周蕾  乐玲  张开  李利荣
作者单位:湖北工业大学 电气与电子工程学院,湖北 武汉 430068 ;美国南 卡罗来纳大学计算机科学与工程系,南卡 哥伦比亚 29201,湖北工业大学 电气与电子工程学院,湖北 武汉 430068,湖北工业大学 电气与电子工程学院,湖北 武汉 430068,湖北工业大学 电气与电子工程学院,湖北 武汉 430068,湖北工业大学 电气与电子工程学院,湖北 武汉 430068
基金项目:国家自然科学基金(61571182,61601177)、国家留学基金(201808420418)、湖北省自然科学基金(2019CFB530)和湖北省 科技厅重大专项(2019ZYYD020)资助项目 (1.湖北工业大学 电气与电子工程学院,湖北 武汉 430068; 2.美国南卡罗来纳大学计算机科学与工程系,南卡 哥伦比亚 29201)
摘    要:针对磁共振成像(magnetic resonance imaging, MRI)颅脑肿瘤区域误识别与分割网络空间信息丢失问题,提出一种基于双支路特征融合的MRI脑肿瘤图像分割方法。首先通过主支路的重构VGG与注意力模型(re-parameterization visual geometry group and attention model, RVAM)提取网络的上下文信息,然后使用可变形卷积与金字塔池化模型(deformable convolution and pyramid pooling model, DCPM)在副支路获取丰富的空间信息,之后使用特征融合模块对两支路的特征信息进行融合。最后引入注意力模型,在上采样过程中加强分割目标在解码时的权重。提出的方法在Kaggle_3m数据集和BraTS2019数据集上进行了实验验证,实验结果表明该方法具有良好的脑肿瘤分割性能,其中在Kaggle_3m上,Dice相似系数、杰卡德系数分别达到了91.45%和85.19%。

关 键 词:磁共振成像(magnetic resonance imaging  MRI)颅脑肿瘤图像分割  双支路特征融合  重构VGG与注意力模型(re-parameterization visual geometry group and attention model  RVAM)  可变形卷积与金字塔池化模型(deformable convolution and pyramid pooling model  DCPM)
收稿时间:2021-07-22

Research on MRI brain tumor image segmentation based on dual-branch feature fusion
XIONG Wei,ZHOU Lei,YUE Ling,ZHANG Kai and LI Li rong. Research on MRI brain tumor image segmentation based on dual-branch feature fusion[J]. Journal of Optoelectronics·laser, 2022, 0(4): 383-392
Authors:XIONG Wei  ZHOU Lei  YUE Ling  ZHANG Kai  LI Li rong
Affiliation:School of Electrical & Electronic Engineering,Hubei University of Technology, Wuhan,Hubei 430068,China ;Department of Computer Science & Engineering,Univers ity of South Carolina,Columbia, SC 29201,USA,School of Electrical & Electronic Engineering,Hubei University of Technology, Wuhan,Hubei 430068,China,School of Electrical & Electronic Engineering,Hubei University of Technology, Wuhan,Hubei 430068,China,School of Electrical & Electronic Engineering,Hubei University of Technology, Wuhan,Hubei 430068,China and School of Electrical & Electronic Engineering,Hubei University of Technology, Wuhan,Hubei 430068,China
Abstract:To address the problem of MRI brain tu mor region misidentification and spatial information loss of segmentation networ k,an MRI brain tumor image segmentation method based on dual-branch feature fusion is proposed.First,the contextual information of t he network is extracted by structurally the re-parameterization visual geometry group and attention model (RVAM ) in the primary branch,and then the rich spatial information is obtained in the secondary branc h using deformable convolution and pyramid pooling model (DCPM),after which the feature fusion mod ule is used to fuse the feature information of the two branches.Finally,the attention model is introduced to strengthen the weight of segmented targets in the up-sampling process at decodi ng.The proposed method has been experimentally validated on the Kaggle_3m and BraTS2019datasets ,and the experimental results show that our method has good brain tumor segmentation perf ormance,where the Dice similarity coefficient and Jaccard coefficient reach 91.45% and 85.19% on Kaggle_3m,respectively.
Keywords:magnetic resonance imaging (MRI) brain tumor image segmentation   dual-branch feature fusion   re-parameteriz ation VGG and attention model (RVAM)   deformable convolution and pyramid pooling model (DCPM)
本文献已被 维普 等数据库收录!
点击此处可从《光电子.激光》浏览原始摘要信息
点击此处可从《光电子.激光》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号