首页 | 本学科首页   官方微博 | 高级检索  
     


Room temperature synthesis and ammonia sensing of monodispersed hierarchical 1 and 3-dimensional Co3O4 nanostructures: switching from p to n-type sensing
Authors:Khalid  Hina  Akhtar  Khalida
Affiliation:1.National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar-25120, Khyber Pakhtunkhwa, Pakistan
;
Abstract:

This study report on a sonochemical synthesis of 1- and 3-dimensional hierarchical nanostructured cobalt oxide systems (Co3O4) and their application in ammonia sensing at room temperature (i.e., 30 °C). The Co3O4 nanostructures were synthesized via a room temperature-assisted precipitation and subsequent thermal treatment of the oxalate precursor. The resulted nanostructures were characterized by SEM, XRD, TEM, FTIR spectroscopy, BET, and TGA/DTA. The synthesis mechanism was proposed on the basis of morphology analyzed at various stages of the particle growth. It was observed that the final hierarchical microspheres structure resulted from the self-aggregation of the initially formed nanorods. The microspheres and nanorods were used as efficient room temperature gas sensors for ammonia detection in the concentration range of 0.01–500 ppm. The nanorod-based sensor showed an unusual n-type sensing behavior to ammonia in a temperature range of 30–300 °C. This transition of p to n-type was correlated to the formation of successive layers of physisorbed water molecules at the surface of the synthesized Co3O4. However, in case of the microspheres, the n-type behavior and superior sensitivity were observed at 30 °C followed by a negligible response up to 200 °C, while the intrinsic p-type behavior was recorded at an elevated temperature (200–300 °C). The observed unusual sensing performance may be associated with the crystallographic nature and lattice strain in the material structures. Additionally, the large specific surface area and the change in crystalline structure with temperature made the as prepared novel hierarchical Co3O4 structures a distinctive material for sensing ammonia at 30 °C.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号