首页 | 本学科首页   官方微博 | 高级检索  
     


Eigenstrain formulation of boundary integral equations for modeling particle-reinforced composites
Authors:Hang Ma  Cheng Yan  Qing-Hua Qin
Affiliation:1. Department of Mechanics, College of Sciences, Shanghai University, Shanghai 200444, China;2. School of Engineering Systems, Queensland University of Technology, Qld 4001, Australia;3. Department of Engineering, Australian National University, ACT 0200, Australia
Abstract:A novel computational model is presented using the eigenstrain formulation of the boundary integral equations for modeling the particle-reinforced composites. The model and the solution procedure are both resulted intimately from the concepts of the equivalent inclusion of Eshelby with eigenstrains to be determined in an iterative way for each inhomogeneity embedded in the matrix. The eigenstrains of inhomogeneity are determined with the aid of the Eshelby tensors, which can be readily obtained beforehand through either analytical or numerical means. The solution scale of the inhomogeneity problem with the present model is greatly reduced since the unknowns appear only on the boundary of the solution domain. The overall elastic properties are solved using the newly developed boundary point method for particle-reinforced inhomogeneous materials over a representative volume element with the present model. The effects of a variety of factors related to inhomogeneities on the overall properties of composites as well as on the convergence behaviors of the algorithm are studied numerically including the properties and shapes and orientations and distributions and the total number of particles, showing the validity and the effectiveness of the proposed computational model.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号