首页 | 本学科首页   官方微博 | 高级检索  
     


The relationship between microstructure,fracture and abrasive wear in Al2O3/SiC nanocomposites and microcomposites containing 5 and 10% SiC
Authors:Apichart Limpichaipanit  Richard I Todd
Affiliation:1. Department of Physics, Kyushu University, Fukuoka 812-8581, Japan;2. Department of Chemistry, Kyushu University, Fukuoka 812-8581, Japan
Abstract:Alumina/SiC nanocomposites are much more resistant to severe wear than monolithic alumina. In order to clarify the mechanisms responsible for these improvements, alumina and alumina/SiC nanocomposites with 5 and 10 vol.% SiC and various alumina grain sizes were fabricated. For comparison, a 10 vol.% SiC “microcomposite” was also fabricated using 3 μm SiC particles. The extent of cracking beneath hardness indentations was examined and the specimens were tested in abrasive wear. Quantitative surface fractography of the worn surfaces was carried out. The wear properties depended strongly on the grain size in pure alumina, but were independent of the alumina grain size in the nanocomposites. This is consistent with the idea that much of the improvement in wear resistance when SiC is added to alumina stems from a reduction in the size of the individual pullouts owing to the accompanying change in fracture mode. In addition, crack initiation by plastic deformation during abrasion and indentation was found to be strongly inhibited when 10 vol.% nanosized SiC was added to alumina. The addition of 3 μm “micro-sized” SiC did not have the same effect. The ability of fine SiC particles to suppress cracking is attributed to the blocking of twins and dislocation pileups by intragranular SiC nanoparticles. This reduces the length of the twins or pileups and hence their ability to nucleate microcracks.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号