首页 | 本学科首页   官方微博 | 高级检索  
     


Chitin scaffolds in tissue engineering
Authors:Jayakumar Rangasamy  Chennazhi Krishna Prasad  Srinivasan Sowmya  Nair Shantikumar V  Furuike Tetsuya  Tamura Hiroshi
Affiliation:Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Cochin-682041, India; E-Mails: drkrishnaprasadc@aims.amrita.edu (K.P.C.); sowmyasrinivasan@aims.amrita.edu (S.S.); shantinair@aims.amrita.edu (S.V.N.).
Abstract:Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine.
Keywords:chitin scaffold  bone  cartilage  wound  tissue engineering  biomaterials  hydrogel
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号