首页 | 本学科首页   官方微博 | 高级检索  
     

基于联合特征和XGBoost的活动语义识别方法
引用本文:郭茂祖,张彬,赵玲玲,张昱.基于联合特征和XGBoost的活动语义识别方法[J].计算机应用,2020,40(11):3159-3165.
作者姓名:郭茂祖  张彬  赵玲玲  张昱
作者单位:1. 北京建筑大学 电气与信息工程学院, 北京 100044;2. 建筑大数据智能处理方法研究北京市重点实验室(北京建筑大学), 北京 100044;3. 哈尔滨工业大学 计算机科学与技术学院, 哈尔滨 150001;4. 深部岩土力学与地下工程国家重点实验室(中国矿业大学), 北京 100083
基金项目:研究生创新项目;国家自然科学基金;安徽师范大学培育项目;创新团队建设项目;中央高校基本科研业务费专项;北京市教委科技重点项目;教育部卓越工程师教育培养计划项目产学合作协同育人项目
摘    要:针对以往活动语义识别研究单纯提取时间维度上的序列特征以及周期特征、缺乏对空间信息的深度挖掘等问题,提出一种基于联合特征和极限梯度提升(XGBoost)的活动语义识别方法。首先,挖掘时间信息中的活动周期性特征和空间信息中的经纬度特征;然后,使用经纬度信息通过具有噪声的基于密度的聚类(DBSCAN)算法提取空间区域热度特征,将这些特征组成特征向量来刻画用户活动语义;最后,采用集成学习方法中的XGBoost算法建立活动语义识别模型。在FourSquare的两个公共签到数据集上,基于联合特征的模型比基于时间特征的模型在识别准确率上提高了28个百分点,与上下文感知混合(CAH)方法和时空活动偏好(STAP)方法对比,所提方法的识别准确率分别提高了30个百分点和5个百分点。实验结果表明所提方法与对比方法相比在活动语义识别问题上更加准确有效。

关 键 词:时空数据  活动语义识别  空间热度  具有噪声的基于密度的聚类  极限梯度提升算法  
收稿时间:2020-03-18
修稿时间:2020-06-19

Activity semantic recognition method based on joint features and XGBoost
GUO Maozu,ZHANG Bin,ZHAO Lingling,ZHANG Yu.Activity semantic recognition method based on joint features and XGBoost[J].journal of Computer Applications,2020,40(11):3159-3165.
Authors:GUO Maozu  ZHANG Bin  ZHAO Lingling  ZHANG Yu
Abstract:The current research on the activity semantic recognition only extracts the sequence features and periodic features on the time dimension, and lacks deep mining of spatial information. To solve these problems, an activity semantic recognition method based on joint features and eXtreme Gradient Boosting (XGBoost) was proposed. Firstly, the activity periodic features in the temporal information as well as the latitude and longitude features in the spatial information were extracted. Then the latitude and longitude information was used to extract the heat features of the spatial region based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. The user activity semantics was represented by the feature vectors combined with these features. Finally, the activity semantic recognition model was established through the XGBoost algorithm in the integrated learning method. On two public check-in datasets of FourSquare, the model based on joint features has a 28 percentage points improvement in recognition accuracy compared to the model with only temporal features, and compared with the Context-Aware Hybrid (CAH) method and the Spatial Temporal Activity Preference (STAP) method, the proposed method has the recognition accuracy increased by 30 percentage points and 5 percentage points respectively. Experimental results show that the proposed method is more accurate and effective on the problem of activity semantic recognition compared to the the comparison methods.
Keywords:spatio temporal data  activity semantic recognition  spatial heat  Density-Based Spatial Clustering of Applications with Noise (DBSCAN)  eXtreme Gradient Boosting (XGBoost) algorithm  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号