首页 | 本学科首页   官方微博 | 高级检索  
     

基于集成LightGBM和贝叶斯优化策略的房价智能评估模型
引用本文:顾桐,许国良,李万林,李家浩,王志愿,雒江涛. 基于集成LightGBM和贝叶斯优化策略的房价智能评估模型[J]. 计算机应用, 2020, 40(9): 2762-2767. DOI: 10.11772/j.issn.1001-9081.2019122249
作者姓名:顾桐  许国良  李万林  李家浩  王志愿  雒江涛
作者单位:1. 重庆邮电大学 通信与信息工程学院, 重庆 400065;2. 重庆邮电大学 电子信息与网络工程研究院, 重庆 400065
基金项目:重庆市自然科学基金;重庆市技术创新与应用示范产业类重点研发项目;教育部-中国移动科研基金
摘    要:针对传统房价评估方法中存在的数据源单一、过分依赖主观经验、考虑因素理想化等问题,提出一种基于多源数据和集成学习的智能评估方法。首先,从多源数据中构造特征集,并利用Pearson相关系数与序列前向选择法提取最优特征子集;然后,基于构造的特征,以Bagging集成策略作为结合方法集成多个轻量级梯度提升机(LightGBM),并利用贝叶斯优化算法对模型进行优化;最后,将该方法应用于房价评估问题,实现房价的智能评估。在真实的房价数据集上进行的实验表明,相较于支持向量机(SVM)、随机森林等传统模型,引入集成学习和贝叶斯优化的新模型的评估精度提升了3.15%,并且百分误差在10%以内的评估结果占比84.09%。说明所提模型能够很好地应用于房价评估领域,得到的评估结果更准确。

关 键 词:多源数据  特征选择  轻量级梯度提升机  集成学习  贝叶斯优化  房价智能评估  
收稿时间:2020-01-09
修稿时间:2020-02-25

Intelligent house price evaluation model based on ensemble LightGBM and Bayesian optimization strategy
GU Tong,XU Guoliang,LI Wanlin,LI Jiahao,WANG Zhiyuan,LUO Jiangtao. Intelligent house price evaluation model based on ensemble LightGBM and Bayesian optimization strategy[J]. Journal of Computer Applications, 2020, 40(9): 2762-2767. DOI: 10.11772/j.issn.1001-9081.2019122249
Authors:GU Tong  XU Guoliang  LI Wanlin  LI Jiahao  WANG Zhiyuan  LUO Jiangtao
Affiliation:1. College of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;2. Electronic Information and Networking Research Institute, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract:Concerning the problems in traditional house price evaluation method, such as single data source, over-reliance on subjective experience, idealization of considerations, an intelligent evaluation method based on multi-source data and ensemble learning was proposed. First, feature set was constructed from multi-source data, and the optimal feature subset was extracted using Pearson correlation coefficient and sequential forward selection method. Then, with Bagging ensemble strategy used as a combination method, multiple Light Gradient Boosting Machines (LightGBMs) were integrated based on the constructed features, and the model was optimized by using Bayesian optimization algorithm. Finally, this method was applied to the problem of house price evaluation, and the intelligent evaluation of house prices was realized. Experimental results on the real house price dataset show that, compared with traditional models such as Support Vector Machine (SVM) and random forest, the new model introduced with ensemble learning and Bayesian optimization improves the evaluation accuracy by 3.15%, and the evaluation results with percent error within 10% account for 84.09%. It can be seen that, the proposed model can be well applied to the field of intelligent house price evaluation, and has more accurate evaluation results.
Keywords:multi-source data  feature selection  Light Gradient Boosting Machine (LightGBM)  ensemble learning  Bayesian optimization  intelligent evaluation of house price  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号