首页 | 本学科首页   官方微博 | 高级检索  
     

基于差分隐私的高精度直方图发布方法
引用本文:李昆明,王超迁,倪巍伟,鲍晓涵. 基于差分隐私的高精度直方图发布方法[J]. 计算机应用, 2020, 40(11): 3242-3248. DOI: 10.11772/j.issn.1001-9081.2020030379
作者姓名:李昆明  王超迁  倪巍伟  鲍晓涵
作者单位:1. 江苏方天电力技术有限公司 智能电网服务中心, 南京 210000;2. 东南大学 计算机科学与工程学院, 南京 211189
摘    要:针对已有基于分组平抑差分噪声误差的隐私保护直方图发布方法无法有效均衡分组近似误差与差分隐私(DP)拉普拉斯误差,从而造成直方图可用性缺失的问题,提出基于差分隐私的高精度直方图发布方法(HPHP)。首先,采用约束推断方法,在满足DP约束的前提下实现直方图排序;然后,基于有序直方图,采用动态规划分组方法在添加噪声的直方图上生成具有最小总误差的分组;最后,在各组均值上添加拉普拉斯噪声。方便对比分析起见,提出具有理论最小误差的隐私保护直方图发布方法(Optimal)。将HPHP与直接添加噪声的DP方法、AHP方法以及Optimal进行实验分析,实验结果表明:相较于AHP方法,HPHP所发布直方图的Kullback-Leibler散度(KLD)能够降低90%,接近Optimal的效果。因此,在相同的预置条件下,HPHP可以在保证满足DP的前提下发布更高精度的直方图。

关 键 词:直方图  差分隐私  约束推断  全局分组  动态规划  
收稿时间:2020-03-30
修稿时间:2020-05-29

High-precision histogram publishing method based on differential privacy
LI Kunming,WANG Chaoqian,NI Weiwei,BAO Xiaohan. High-precision histogram publishing method based on differential privacy[J]. Journal of Computer Applications, 2020, 40(11): 3242-3248. DOI: 10.11772/j.issn.1001-9081.2020030379
Authors:LI Kunming  WANG Chaoqian  NI Weiwei  BAO Xiaohan
Affiliation:1. Smart Grid Service Center, Jiangsu Frontier Electric Technology Company Limited, Nanjing Jiangsu 210000, China;2. College of Computer Science and Engineering, Southeast University, Nanjing Jiangsu 211189, China
Abstract:Aiming at the problem that the existing privacy protection histogram publishing methods based on grouping to suppress differential noise errors cannot effectively balance the group approximation error and the Differential Privacy (DP) Laplacian error, resulting in the lack of histogram availability, a High-Precision Histogram Publishing method (HPHP) was proposed. First, the constraint inference method was used to achieve the histogram ordering under the premise of satisfying the DP constraints. Then, based on the ordered histogram, the dynamic programming grouping method was used to generate groups with the smallest total error on the noise-added histogram. Finally, the Laplacian noise was added to each group mean. For the convenience of comparative analysis, the privacy protection histogram publishing method with the theoretical minimum error (Optimal) was proposed. Experimental analysis results between HPHP, DP method with noise added directly, AHP (Accurate Histogram Publication) method and Optimal show that the Kullback-Leibler Divergence (KLD) of the histogram published by HPHP is reduced by 90% compared to that of AHP method and is close to the effect of Optimal. In conclusion, under the same pre-conditions, HPHP can publish higher-precision histograms on the premise of ensuring DP.
Keywords:histogram  Differential Privacy (DP)  constraint inference  global grouping  dynamic programming  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号