首页 | 本学科首页   官方微博 | 高级检索  
     

基于多权重相似度的随机漫步推荐算法
引用本文:邹洋,赵应丁. 基于多权重相似度的随机漫步推荐算法[J]. 计算机应用研究, 2020, 37(11): 3267-3270,3296
作者姓名:邹洋  赵应丁
作者单位:南京航空航天大学 经济与管理学院,南京211106;江西农业大学 软件学院,南昌330045;广东技术师范大学 数学与系统科学学院,广州510540
摘    要:在传统个性化推荐算法的基础上,提出了一种基于多权重相似度的随机漫步推荐算法。为了解决传统协同过滤算法中忽略了社交网络、热门项目以及共同评分项目之间影响等问题,通过引入万有引力公式计算社交网络中的用户相似度,并对传统协同过滤算法中的相似度进行改进,采用权重因子结合这两者相似度,最后开拓性地结合随机漫步算法进行商品推荐。实验结果表明,提出的算法具有比其他推荐算法更好的推荐性能。

关 键 词:推荐算法  万有引力  随机漫步算法  个性化推荐
收稿时间:2019-08-03
修稿时间:2020-09-25

Research on random walk recommendation algorithms based on multi-weight similarity
zouyang and zhaoyingding. Research on random walk recommendation algorithms based on multi-weight similarity[J]. Application Research of Computers, 2020, 37(11): 3267-3270,3296
Authors:zouyang and zhaoyingding
Affiliation:Jiangxi Agricultural University,
Abstract:Based on the traditional personalized recommendation algorithm, this work presented a random walk recommendation algorithm using multi-weight similarity. In order to make up the absence of the influence among social networks, popular items and common scoring items in traditional collaborative filtering algorithms, this paper introduced a gravity formula, which could calculate user similarity in social networks. In addition, this work used weight factors to combine the gravity formula method with the traditional collaborative filtering algorithms. Furthermore, it also added the random walk algorithm for recommendation functions. The experimental results show that the proposed algorithm has better recommendation performance by comparing with other kinds of recommendation algorithms.
Keywords:recommendation algorithm   gravitation   random walk algorithm   personalized recommendation
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号