首页 | 本学科首页   官方微博 | 高级检索  
     

基于ranking的深度张量分解群组推荐算法
引用本文:杨丽,王时绘,朱博. 基于ranking的深度张量分解群组推荐算法[J]. 计算机应用研究, 2020, 37(5): 1311-1316
作者姓名:杨丽  王时绘  朱博
作者单位:湖北大学 计算机与信息工程学院,武汉430062;中国船舶重工集团公司第709研究所,武汉420205
基金项目:国家自然科学基金;湖北省教育厅科学技术研究项目
摘    要:针对当前群组推荐研究中,对于用户偏好建模时大多忽略了群组偏好与个人偏好之间的相互影响以及建模初始化问题,提出了一种基于ranking的混合深度张量分解群组推荐算法(R-HDTF)。该算法首先利用基于深度降噪自动编码器的混合神经网络对群组、个人和项目等信息进行初始化;然后提出基于成对张量分解模型来捕获群组、个人和项目之间的相关关系;最后,采用BPR标准优化张量分解的损失函数,学习提出算法的参数。在真实数据集上的实验结果表明,该算法性能优于传统的主流群组推荐算法。

关 键 词:推荐算法  群组  深度学习  张量分解
收稿时间:2019-02-01
修稿时间:2020-03-19

Ranking based hybrid deep tensor factorization model for group recommendation
Yang Li,WANG Shihui and Zhu Bo. Ranking based hybrid deep tensor factorization model for group recommendation[J]. Application Research of Computers, 2020, 37(5): 1311-1316
Authors:Yang Li  WANG Shihui  Zhu Bo
Affiliation:School of Computer Science and Information Engineering,,
Abstract:When modeling users'' preferences, current researches of group recommendation usually ignored the mutual influence between group preference and individual preference and the problem of modeling initialization. To address these issues, this paper proposed a new group recommendation model called ranking based hybrid deep tensor factorization model, namely R-HDTF model. First of all, this paper developed a hybrid deep learning-based initialization method, which utilized deep denoising autoencoder to pre-train the initial values of the parameters for R-HDTF model. Then, it proposed a pairwise tensor factorization model to capture the correlation among group, individual and item. Finally, it used the Bayesian personalized ranking metric to optimize the loss objective function of tensor factorization and learn the parameters of the proposed model. Experimental results on real data sets show that the performance of the proposed algorithm outperforms traditional group recommendation algorithm.
Keywords:recommendation algorithm   group   deep learning   tensor factorization
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号