首页 | 本学科首页   官方微博 | 高级检索  
     

数据失衡下基于WGAN和GAPCNN的轴承故障诊断研究
引用本文:薛振泽,满君丰,彭成. 数据失衡下基于WGAN和GAPCNN的轴承故障诊断研究[J]. 计算机应用研究, 2020, 37(12): 3681-3685
作者姓名:薛振泽  满君丰  彭成
作者单位:湖南工业大学 计算机学院,湖南 株洲412007;湖南工业大学 计算机学院,湖南 株洲412007;中南大学 自动化学院,长沙410083;长沙民政职业技术学院,长沙410004
基金项目:湖南省研究生创新项目;湖南省教育厅科学研究项目;国家自然科学基金;湖南省自然科学基金
摘    要:针对轴承故障数据严重失衡导致所训练的模型诊断能力和泛化能力较差等问题,提出基于Wasserstein距离的生成对抗网络来平衡数据集的方法。该方法首先将少量故障样本进行对抗训练,待网络达到纳什均衡时,再将生成的故障样本添加到原始少量故障样本中起到平衡数据集的作用;提出基于全局平均池化卷积神经网络的诊断模型,将平衡后的数据集输入到诊断模型中进行训练,通过模型自适应地逐层提取特征,实现故障的精确分类诊断。实验结果表明,所提诊断方法优于其他算法和模型,同时拥有较强的泛化能力和鲁棒性。

关 键 词:故障诊断  深度学习  滚动轴承  生成对抗网络  卷积神经网络
收稿时间:2019-07-19
修稿时间:2020-10-30

Research on bearing fault diagnosis based on depth learning under imbalance of data
xue zhenze,man junfeng and peng cheng. Research on bearing fault diagnosis based on depth learning under imbalance of data[J]. Application Research of Computers, 2020, 37(12): 3681-3685
Authors:xue zhenze  man junfeng  peng cheng
Affiliation:School of Computer Science, Hunan University of Technology,,
Abstract:Aiming at the problem of poor diagnosis ability and generalization ability of the trained model caused by serious imbalance of bearing fault data, this paper proposed a method of generative adversarial networks based on Wasserstein distance to balance dataset. Firstly, it trained a small number of fault samples for adversarial training. Then when the network reached the Nash equilibrium, it added the generated fault samples to the original small number of fault samples to balance the dataset. This paper proposed a diagnostic model based on global average pooled convolutional neural network. The balanced data set was input into the diagnostic model for training. The model was adaptively extracted layer by layer to achieve accurate classification diagnosis of faults. The experimental results show that the proposed diagnostic method is superior to other algorithms and models, and has strong generalization ability and robustness.
Keywords:fault diagnosis   deep learning   rolling bearing   generative adversarial networks   convolution neural network
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号