首页 | 本学科首页   官方微博 | 高级检索  
     

面向社交媒体的直接因果网络发现算法
引用本文:蔡瑞初,谢泳,陈薇,曾艳,郝志峰,杜文俊. 面向社交媒体的直接因果网络发现算法[J]. 计算机应用研究, 2020, 37(9): 2689-2693
作者姓名:蔡瑞初  谢泳  陈薇  曾艳  郝志峰  杜文俊
作者单位:广东工业大学 计算机学院,广州510006;广东工业大学 计算机学院,广州510006;佛山科学技术学院 数学与大数据学院,广东 佛山528000;东北大学 工商管理学院,沈阳 110004
基金项目:广东省科技计划;广州市珠江科技新星项目;广东特支计划资助项目;国家自然科学基金;广东省自然科学基金
摘    要:高维时序因果网络发现是社交媒体因果关系发现的重要问题。然而,现有的时序因果关系发现方法不能发现直接因果以致因果网络推断结果不准确。针对此问题提出了一种直接因果网络发现方法。该方法考虑了时序因果模型的因果延迟、滞后期数量和条件节点集等因素,更准确地发现直接因果关系;另外,采用结合置换检验的因果关系检验方法,解决传递熵阈值难以设定的问题。实验结果表明,该方法在因果网络推断中优于现有方法,有效提升时序上直接因果网络推断的准确率,适用于发现潜在社交媒体因果关系网络。

关 键 词:因果关系  时序  社交媒体  直接因果网络  传递熵
收稿时间:2019-04-25
修稿时间:2020-07-28

Direct causal network discovery algorithm for social media
Cai Rui-chu,Xie Yong,Chen Wei,Zeng Yan,Hao Zhi-feng and Du Wen-jun. Direct causal network discovery algorithm for social media[J]. Application Research of Computers, 2020, 37(9): 2689-2693
Authors:Cai Rui-chu  Xie Yong  Chen Wei  Zeng Yan  Hao Zhi-feng  Du Wen-jun
Affiliation:School of Computers, Guangdong University of Technology,,,,,
Abstract:Time-series causal discovery for high-dimensional networks have been increasingly significant in social media causality. However, the existing algorithms'' inability to discover direct causal relations renders the results of causal network inference not so accurate. Hence, this paper proposed a direct causal network discovery algorithm. It considered various factors, including the causal delay, the lag length and the conditional nodes sets, in the time-series causal model to help improve the accuracy of direct causal network inferring. Further, the method solved the difficulty of setting transfer entropy thresholds through permutation test. Experimental results demonstrate that the method outperforms the existing algorithms in causal network inferring and can conspicuously improve the accuracy of direct causal network inference on time series, which is suitable for discovering potential causal networks in social media.
Keywords:causality   time-series   social media   direct causal network   transfer entropy
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号