首页 | 本学科首页   官方微博 | 高级检索  
     

动压气体轴承-转子系统的分岔和混沌
引用本文:张永芳,吕延军,周世生,虞烈. 动压气体轴承-转子系统的分岔和混沌[J]. 振动、测试与诊断, 2012, 0(Z1): 69-73,150,151
作者姓名:张永芳  吕延军  周世生  虞烈
作者单位:西安理工大学印刷包装工程学院;重庆大学机械传动国家重点实验室;西安理工大学机械与精密仪器工程学院;西安交通大学机械电子及信息系统研究所
基金项目:国家重点实验室开放课题资助项目(编号:SKLMT-KFKT-201011);国家高技术研究发展计划(“八六三”计划)资助项目(编号:2007AA050501);国家自然科学基金资助项目(编号:51075327);陕西省自然科学基金资助项目(编号:2009JQ7006)
摘    要:基于非线性动力学理论,研究了气体动压轴承-转子系统的不平衡响应及分岔行为。建立了与时间相关的非线性气体动压轴承的压力分布模型和气体动压轴承-刚性Jeffcott转子系统的动力学模型。运用有限差分法和逐次超松弛迭代法求解动压气体润滑雷诺方程;运用轨迹图、Poincaré映射图、时间历程图、频谱图和分岔图研究了有限宽气体轴承支承的非线性转子系统的不平衡响应及分岔;数值模拟结果揭示了系统存在复杂多样的非线性现象,这对气体润滑轴承支承的实际轴承—转子系统的设计提供了理论依据。

关 键 词:动压气体轴承-转子系统  非线性  分岔  混沌

Bifurcation and Chaos of a Rotor System Supported by Self-acting Gas Bearings
Zhang Yongfang,Lu¨ Yanjun,Zhou Shisheng,Yu Lie. Bifurcation and Chaos of a Rotor System Supported by Self-acting Gas Bearings[J]. Journal of Vibration,Measurement & Diagnosis, 2012, 0(Z1): 69-73,150,151
Authors:Zhang Yongfang  Lu¨ Yanjun  Zhou Shisheng  Yu Lie
Affiliation:1.School of Printing and Packaging Engineering,Xi′an University of Technology Xi′an,710048,China)(2.State Key Laboratory of Mechanical Transmission,Chongqing University Chongqing,400030,China)(3.School of Mechanical and Instrumental Engineering,Xi′an University of Technology Xi′an,710048,China)(4.Institute of Mechatronics and Information Systems,Xi′an Jiaotong University Xi′an,710049,China)
Abstract:Based on the nonlinear dynamics theory,the unbalanced response and corresponding bifurcation behavior of the rotor dynamic system supported by gas journal bearings are investigated.A time-dependent mathematical model is used to describe the pressure distribution of gas journal bearing with nonlinearity.The model of rigid Jeffcott rotor with self-acting gas journal bearing supports is built.The finite difference method and the successive over relaxation(S.O.R.) method are employed to solve the time-dependent Reynolds equation of gas journal bearings.The unbalanced responses and bifurcation of the rotor dynamic system supported by finite gas journal bearings are analyzed by orbit diagrams,Poincaré map diagram,time series diagram,frequency spectrum diagram and bifurcation diagram.The numerical results reveal the rich and complex nonlinear behaviors of the system,such as periodic,period-doubling,and chaotic motion,and so on.
Keywords:self-acting gas bearing-rotor system  nonlinear  bifurcation  chaos
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号