首页 | 本学科首页   官方微博 | 高级检索  
     


Relationship between the structure and physical-mechanical properties of U8A steel subjected to cold plastic deformation by hydrostatic extrusion
Authors:E S Gorkunov  S M Zadvorkin  L S Goruleva
Affiliation:1.Institute of Engineering Science, Ural Branch,Russian Academy of Sciences,Yekaterinburg,Russia
Abstract:The structure and physical-mechanical properties of U8A high-carbon steel subjected to cold plastic deformation by hydrostatic extrusion have been investigated in a wide range of strain extents. Cold plastic deformation by hydrostatic extrusion has been shown to lead to the dispersion of the structure of U8A high-carbon steel. As the degree of true deformation increases, the ultimate strength and conventional yield limit of U8A steel monotonically grow by 2 and 3.6 times, respectively. Such parameters as coercive force, the number of jumps in magnetic Barkhausen noises, maximum magnetic permeability, residual induction, and the speed of elastic waves are more sensitive to changes in the dislocation density than in the dispersion of the grain and subgrain structure of extruded U8A steel. It has been established that at least two informative testing parameters are needed for nondestructive evaluation of the level of strength properties in extruded U8A steel. Those are coercive force (or maximum magnetic permeability, residual induction, the number of Barkhausen jumps, the speed of elastic waves) for a true deformation of up to 1.62 and the root-mean-square voltage of magnetic Barkhausen noises for true deformations above 1.62.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号