首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊C-均值聚类分析与BP网络的短期负荷预测
引用本文:李芹,许强,吴琼. 基于模糊C-均值聚类分析与BP网络的短期负荷预测[J]. 上海电力学院学报, 2005, 21(4): 321-324
作者姓名:李芹  许强  吴琼
作者单位:1. 上海电力学院,电力与自动化工程学院,上海,200090
2. 重庆工商大学,计算机科学与信息工程学院,重庆,400067
基金项目:上海电力学院青年教师科研基金项目(F03010)
摘    要:提出了一种基于模糊C-均值聚类分析与BP(Back-propagation)网络的短期负荷预测方法,通过模糊C-均值聚类分析将历史负荷数据分成若干类,建立相应的BP网络模型,用LM(Levenberg-Marquardt)优化法进行训练,找出与预测日相符的BP网络,预测一天中96点的负荷,实际负荷预测结果表明,该方法具有较好的训练速度和较高的预测精度。

关 键 词:短期负荷预测 BP网络 电力系统 模糊C-均值聚类
文章编号:1006-4729(2005)04-0321-04
收稿时间:2005-07-15
修稿时间:2005-07-15

The Short-term Load Forcast Using C-means Clustering and BP Network
LI Qin,XU Qiang and WU Qiong. The Short-term Load Forcast Using C-means Clustering and BP Network[J]. Journal of Shanghai University of Electric Power, 2005, 21(4): 321-324
Authors:LI Qin  XU Qiang  WU Qiong
Affiliation:1. School of Electric Power and Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China; 2. Computer Science and Information Engineering College, Chongqing Technology and Business University, Chongqing 400067, China
Abstract:This paper presents a short-term load forecasting method using fuzzy c-means clustering analysis and BP neural network. The historical load data are divided into several categories using fuzzy c-means clustering analysis, the corresponding BP neural network is built and then the Levenberg-Marquardt optimization to train the network is empleyed. The category coincident is found out with that of the daily load to be forecasted, and then the 96 points daily load is forecast with the corresponding BP network. The actual load forecasting results shows that the proposed method possesses faster training speed and greater forecasting accuracy.
Keywords:short-term load forecasting   BP network   power system   fuzzy c-means clustering
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《上海电力学院学报》浏览原始摘要信息
点击此处可从《上海电力学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号