首页 | 本学科首页   官方微博 | 高级检索  
     


Hybrid CPN–Neural Dynamics Model for Discrete Optimization of Steel Structures
Authors:Hojjat Adeli  Hyo Seon Park
Affiliation:Department of Civil Engineering, The Ohio State University, 2070 Neil Avenue, Columbus, Ohio 43210, USA
Abstract:Abstract: In practical design of steel structures, the designer usually must choose from a limited number of commercially available shapes such as the widely used wide flange shapes. In this article, we present a hybrid counterpropagation-neural dynamics model and a new neural network topology for discrete optimization of large structures subjected to the AISC ASD specifications. The constrained structural optimization problem is formulated in terms of a neural dynamics model with constraint and variable layers. The counterpropagation part of the model consists of the competition and interpolation layers. The CPN network is trained to learn the relationship between the cross-sectional area and the radius of gyration of the available sections. The robustness of the hybrid computational model is demonstrated by application to three examples representing the exterior envelope of high-rise and super-high-rise steel building structures, including a 147-story structure with 8904 members.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号