首页 | 本学科首页   官方微博 | 高级检索  
     


Extracellular Vesicles from Human Teeth Stem Cells Trigger ATP Release and Promote Migration of Human Microglia through P2X4 Receptor/MFG-E8-Dependent Mechanisms
Authors:Ugnė   Jonavič  ė  ,Diana Romenskaja,Karolina Kriauč    naitė  ,Akvilė   Jarmalavič      ,Justina Pajarskienė  ,Vytautas Kaš  ė  ta,Virginijus Tunaitis,Tarja Malm,Rashid Giniatulin,Augustas Pivoriū  nas
Affiliation:1.Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; (U.J.); (D.R.); (K.K.); (A.J.); (J.P.); (V.K.); (V.T.);2.A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (T.M.); (R.G.)
Abstract:Extracellular vesicles (EVs) effectively suppress neuroinflammation and induce neuroprotective effects in different disease models. However, the mechanisms by which EVs regulate the neuroinflammatory response of microglia remains largely unexplored. Here, we addressed this issue by testing the action of EVs derived from human exfoliated deciduous teeth stem cells (SHEDs) on immortalized human microglial cells. We found that EVs induced a rapid increase in intracellular Ca2+ and promoted significant ATP release in microglial cells after 20 min of treatment. Boyden chamber assays revealed that EVs promoted microglial migration by 20%. Pharmacological inhibition of different subtypes of purinergic receptors demonstrated that EVs activated microglial migration preferentially through the P2X4 receptor (P2X4R) pathway. Proximity ligation and co-immunoprecipitation assays revealed that EVs promote association between milk fat globule-epidermal growth factor-factor VIII (MFG-E8) and P2X4R proteins. Furthermore, pharmacological inhibition of αVβ3/αVβ5 integrin suppressed EV-induced cell migration and formation of lipid rafts in microglia. These results demonstrate that EVs promote microglial motility through P2X4R/MFG-E8-dependent mechanisms. Our findings provide novel insights into the molecular mechanisms through which EVs target human microglia that may be exploited for the development of new therapeutic strategies targeting disease-associated neuroinflammation.
Keywords:microglia   extracellular vesicles   migration   ATP   P2X4 receptor   MFG-E8   lipid rafts
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号