首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental evaluation of the strength distribution of fibers under high strain rates by bimodal Weibull distribution
Authors:Zhen Wang  Yuanming Xia
Affiliation:

Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China

Abstract:This paper proposes a bimodal Weibull distribution model for strain- rate- and temperature-dependent fiber strength. The relationships of the mechanical quantities between fiber and fiber bundles at different strain rates and temperatures under tensile impact are established. A method for determining mechanical parameters of fibers by tensile impact tests of fiber bundles is established. Experiments on E-glass bundles have been performed at six strain rates (90, 300, 800, 1100, 1300 and 1700 s−1) at three different temperatures (−70, 14, 80°C). According to the statistical analysis and models, the mechanical parameters for the fiber and their relationships with strain rate and temperature are obtained from the tensile impact experimental results. The emulated stress/strain curves from the model are in good agreement with the test data. The theoretical model and test results show that the shape parameters, βd1 and βd2, are not only strain rate independent but also temperature independent. The scale parameters σd01 and σd02, which change with strain rate and temperature, are not constant.
Keywords:fibers   bimodal Weibull distribution   rate and temperature dependence   tensile impact
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号