首页 | 本学科首页   官方微博 | 高级检索  
     


Estrogen-induced alteration of mu-opioid receptor immunoreactivity in the medial preoptic nucleus and medial amygdala
Authors:CB Eckersell  P Popper  PE Micevych
Affiliation:Department of Neurobiology, School of Medicine, and the Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095-1763, USA.
Abstract:The mu-opioid receptor (mu-OR), like most G-protein-coupled receptors, is rapidly internalized after agonist binding. Although opioid peptides induce internalization in vivo, there are no studies that demonstrate mu-OR internalization in response to natural stimuli. In this study, we used laser-scanning microscopy to demonstrate that estrogen treatment induces the translocation of mu-OR immunoreactivity (mu-ORi) from the membrane to an internal location in steroid-sensitive cell groups of the limbic system and hypothalamus. Estrogen-induced internalization was prevented by the opioid antagonist naltrexone, suggesting that translocation was largely dependent on release of endogenous agonists. Estrogen treatment also altered the pattern of mu-ORi at the bright-field light microscopic level. In the absence of stimulation, the majority of immunoreactivity is diffuse, with few definable mu-OR+ cell bodies or processes. After stimulation, the density of distinct processes filled with mu-ORi was significantly increased. We interpreted the increase in the number of mu-OR+ processes as indicating increased levels of internalization. Using this increase in the density of mu-OR+ fibers, we showed that treatment of ovariectomized rats with estradiol benzoate induced a rapid and reversible increase in the number of fibers. Significant internalization was noted within 30 min and lasted for >24 hr after estrogen treatment in the medial preoptic nucleus, the principal part of the bed nucleus, and the posterodorsal medial amygdala. Naltrexone prevented the increase of mu-OR+ processes. These data imply that estrogen treatment stimulates the release of endogenous opioids that activate mu-OR in the limbic system and hypothalamus providing a "neurochemical signature" of steroid activation of these circuits.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号