首页 | 本学科首页   官方微博 | 高级检索  
     


A 3-D High-Frequency Array Based 16 Channel Photoacoustic Microscopy System for In Vivo Micro-Vascular Imaging
Abstract: This paper discusses the design of a novel photoacoustic microscopy imaging system with promise for studying the structure of tissue microvasculature for applications in visualizing angiogenesis. A new 16 channel analog and digital high-frequency array based photoacoustic microscopy system (PAM) was developed using an Nd:YLF pumped tunable dye laser, a 30 MHz piezo composite linear array transducer, and a custom multichannel receiver electronics system. Using offline delay and sum beamforming and beamsteering, phantom images were obtained from a 6 $mu{hbox {m}}$ carbon fiber in water at a depth of 8 mm. The measured $-6~{rm dB}$ lateral and axial spatial resolution of the system was $100pm 5~mu{hbox {m}}$ and $45pm 5~mu{hbox {m}}$, respectively. The dynamic focusing capability of the system was demonstrated by imaging a composite carbon fiber matrix through a 12.5 mm imaging depth. Next, 2-D in vivo images were formed of vessels around 100 $mu{hbox {m}}$ in diameter in the human hand. Three-dimensional in vivo images were also formed of micro-vessels 3 mm below the surface of the skin in two Sprague Dawley rats.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号