首页 | 本学科首页   官方微博 | 高级检索  
     


Crystal, electronic and luminescence properties of Eu-doped Sr2Al2−xSi1+xO7−xNx
Authors:Yuan Qiang Li  Naoto Hirosaki  Rong-Jun Xie  Mamoru Mitomo
Affiliation:aNano Ceramics Centers, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
Abstract:The crystal and electronic structures, as well as the luminescence properties of Sr2Al2−xSi1+xO7−xNx:Eu2+ are reported. First-principles calculations energetically confirm that the Al and Si atoms are in partial ordering in the 2a and 4e sites in Sr2Al2SiO7. In addition, the band structure calculation shows that Sr2Al2SiO7 has an indirect band gap with an energy gap of about 4.07 eV, which is in good agreement with the experimental data (not, vert, similar5.3 eV) obtained from the diffuse reflection spectrum. The crystal structure of Sr2Al2SiO7 can be modified by Si–N substitution for Al–O in the lattice with a maximum solubility of about x=0.6. The average bond length of EuSr-(O,N) slightly increases although the lattice parameters decrease with the incorporation of Si–N in Sr2Al2SiO7:Eu2+. Under excitation in the visible spectral region, Sr2Al2−xSi1+xO7−xNx:Eu2+ emits blue to yellow light with a broad emission band in the range of 480–570 nm, varying with both the Eu concentration and the x value. The red shift of the emission band of Eu2+ is associated with an increase in the crystal-field splitting and the covalency, which arise from the incorporation of nitrogen as well as the energy transfer between the Eu ions at high Eu concentrations. Moreover, the Eu ions have a strong effect on both the concentration quenching and the thermal quenching in Sr2Al2−xSi1+xO7−xNx. The temperature dependence of photoluminescence indicates that Sr2Al2−xSi1+xO7−xNx:Eu2+ shows strong thermal quenching due to the dominant nonradiative process at room temperature.
Keywords:Crystal structure  Electronic structure  Luminescence  Phosphor  Distrontium dialuminum silicate trioxide  Oxynitride
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号