首页 | 本学科首页   官方微博 | 高级检索  
     

基于DOM的信息检索研究
引用本文:陈涛,薛丽敏,宋庆帅. 基于DOM的信息检索研究[J]. 信息网络安全, 2014, 0(5): 82-86
作者姓名:陈涛  薛丽敏  宋庆帅
作者单位:海军指挥学院信息系,江苏南京211800
摘    要:向量空间模型是信息检索中的重要模型,传统的向量空间模型考虑了特征项在目标文档中的出现频率和文档频率,但并未考虑特征项出现在文本中的位置这一重要信息。针对这一问题,文章在将文档以文档对象模型表示的基础上,根据特征项出现的位置不同,对特征项的权重额外附加一个不同的系数,以反映不同位置上的特征项在表达文档主旨上的能力差异,以期改善返回文档的排序质量,改进用户的检索工作。通过模拟实验,验证了该方法相比于传统VSM在改进检索效果上的优势。

关 键 词:信息检索  位置信息  DOM  LVSM

Research of Information Retrieval based on DOM
CHEN Tao,XUE Li-min,SONG Qing-shuai. Research of Information Retrieval based on DOM[J]. Netinfo Security, 2014, 0(5): 82-86
Authors:CHEN Tao  XUE Li-min  SONG Qing-shuai
Affiliation:(Dept. of Information, Naval Command College, Nanjing Jiangsu 211800, China)
Abstract:Vector Space Model is a important model in information retrieval, traditional Vector Space Model take feature term frequence and document frequence into account, regardless of the location feature term appears, which is a significant information. Considering the problem above, after turn document into Document Object Model, this paper add a ratio to weight of feature term based on different location it appears to inflect different ability of feature term that appears in different location in expressing main idea of the document, thus improve ranking result of documents returned and users' retrieving work. Simulation experiment manifests the advantage of the solution above over traditional VSM.
Keywords:information retrieval  location information  DOM  LVSM
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号