首页 | 本学科首页   官方微博 | 高级检索  
     


Destabilization of peptide binding and interdomain communication by an E543K mutation in the bovine 70-kDa heat shock cognate protein, a molecular chaperone
Authors:JH Ha  U Hellman  ER Johnson  L Li  DB McKay  MC Sousa  S Takeda  C Wernstedt  SM Wilbanks
Affiliation:Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
Abstract:We have compared 70-kDa heat shock cognate protein (Hsc70) isolated from bovine brain with recombinant wild type protein and mutant E543K protein (previously studied as wild type in our laboratory). Wild type bovine and recombinant protein differ by posttranslational modification of lysine 561 but interact similarly with a short peptide (fluorescein-labeled FYQLALT) and with denatured staphylococcal nuclease-(Delta135-149). Mutation E543K results in 4. 5-fold faster release of peptide and lower stability of complexes with staphylococcal nuclease-(Delta135-149). ATP hydrolysis rates of the wild type proteins are enhanced 6-10-fold by the addition of peptide. The E543K mutant has a peptide-stimulated hydrolytic rate similar to that of wild type protein but a higher unstimulated rate, yielding a mere 2-fold enhancement. All three versions of Hsc70 possess similar ATP-dependent conformational shifts, and all show potassium ion dependence. These data support the following model: (i) in the presence of K+, Mg2+, and ATP, the peptide binding domain inhibits the ATPase; (ii) binding of peptide relieves this inhibition; and (iii) the E543K mutation significantly attenuates the inhibition by the peptide binding domain and destabilizes Hsc70-peptide complexes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号