首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波包分析和BP神经网络的中医脉象识别方法
引用本文:郭红霞,王炳和,张丽琼,师义民. 基于小波包分析和BP神经网络的中医脉象识别方法[J]. 计算机应用研究, 2006, 23(6): 185-187
作者姓名:郭红霞  王炳和  张丽琼  师义民
作者单位:中国人民武装警察部队工程学院,陕西,西安,710086;西北工业大学,理学院,应用数学系,陕西,西安,710072;中国人民武装警察部队工程学院,陕西,西安,710086;西北工业大学,理学院,应用数学系,陕西,西安,710072
基金项目:中国科学院资助项目;陕西省自然科学基金
摘    要:利用小波变换具有揭示信号时频两域细节和局部特征的能力,提出了将脉象信号的小波包分析和BP神经网络相结合以达到识别中医脉象的新方法。首先对脉象信号作三层小波包分解,利用小波包分解系数重构信号。然后计算第三层从低频至高频八个频带的信号能量,以此能量构造出脉象信号的特征向量送入改进的BP神经网络进行训练。大量样本的实验证实该方法具有识别正确率高、速度快的优点。

关 键 词:脉象识别  BP神经网络  小波包分析
文章编号:1001-3695(2006)06-0185-03
收稿时间:2005-04-30
修稿时间:2005-08-05

Recognition Method of TCM Pulse Conditions Based on Wavelet Packet Analysis and BP Neural Networks
GUO Hong xi,WANG Bing he,ZHANG Li qiong,SHI Yi min. Recognition Method of TCM Pulse Conditions Based on Wavelet Packet Analysis and BP Neural Networks[J]. Application Research of Computers, 2006, 23(6): 185-187
Authors:GUO Hong xi  WANG Bing he  ZHANG Li qiong  SHI Yi min
Abstract:Using the abalities of revealing the signal details and the local characteristics in the time-frequency domains, this paper presents a pulse-condition recognition method that is based on wavelet packets analysis and BP neural networks. The pulse-condition signals are decomposed into three layers wavelet coefficients by which the pulse-condition signals are reconstructed. On the third layer wavelet signals, the energy values of eight frequency bands from low frequency to high frequency are calculated. The energy values are used as the characteristic vectors of the pulse-condition signals, which are sent to improved BP neural networks as charateristic vectors to be trained. The experiment results of 480 pulse-conditions show that the recognition rate of our method is rather high.
Keywords:Pulse-condition Recognition   BP Neural Networks   Wavelet Packet Analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号