首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于多主体技术的分布式图像聚类算法
引用本文:路 红,陈立潮,潘理虎,闫慧敏,黄河清. 一种基于多主体技术的分布式图像聚类算法[J]. 计算机应用研究, 2012, 29(11): 4353-4356
作者姓名:路 红  陈立潮  潘理虎  闫慧敏  黄河清
作者单位:1. 太原科技大学 计算机科学技术系,太原,030024
2. 1. 太原科技大学 计算机科学技术系, 太原 030024; 2. 中国科学院地理科学与资源研究所, 北京 100101
3. 中国科学院地理科学与资源研究所,北京,100101
基金项目:国家自然科学基金资助项目(41071344); 太原科技大学博士创新基金资助项目(20102030)
摘    要:针对医学图像具有对比度较低,不同组织之间的模糊性较高的特点,给出一种基于多主体和数学形态学灰度形态运算的聚类算法。算法采用agent技术和多结构元素结合的模式,用结构元素做智能个体,每个不同类型的agents随机散布在离散空间格点上,在同时刻控制系统驱动下agents根据其自身结构元素的类型用给出的邻域平均算子自主选择作相应的运算进而实现图像聚类。算法无须先验知识和预处理操作,对初始聚类点不敏感,无须事先输入聚类簇数。算法具有分布式并行计算功能和自主分析能力。实验结果验证了该算法的可行性和可靠性。

关 键 词:多主体  图像聚类算法  多结构元素  邻域平均算子  形态学运算

Distributed image clustering algorithm based on multi-agent technology
LU Hong,CHEN Li-chao,PAN Li-hu,YAN Hui-min,HUANG He-qing. Distributed image clustering algorithm based on multi-agent technology[J]. Application Research of Computers, 2012, 29(11): 4353-4356
Authors:LU Hong  CHEN Li-chao  PAN Li-hu  YAN Hui-min  HUANG He-qing
Affiliation:1. Dept. of Computer Science & Technology, Taiyuan University of Science & Technology, Taiyuan 030024, China; 2. Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Scienes, Beijing 100101, China
Abstract:Medical images have the characteristics of lower contrast and higher fuzziness in different organizations. This paper proposed a clustering algorithm, which was based on multi-agent and gray-scale mathematical morphology operations. It combined agent technology and gray-scale mathematical morphology model in the algorithm. And it selected the structural element of the mathematical morphology as agent. It distributed each agents of different types randomly in the discrete spatial grid, and according to the type of its structural elements, it chose the appropriate operations with the given the neighborhood average operator to realize the image clustering in the same time control system driven. The algorithm did not require a priori knowledge and pre-processing operations, and it was not sensitive to the initial cluster points and need not prior input the number of clusters. This algorithm had distributed parallel computing capabilities and self-analysis capabilities. The experimental results show that the algorithm has the accuracy and reliability.
Keywords:multi-agent   image clustering algorithm   multi-structure element   neighborhood average operator   morphology operation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号