首页 | 本学科首页   官方微博 | 高级检索  
     

高阶非线性不确定多智能体系统自适应RBF神经网络协同控制
作者姓名:黄小龙  陈阳舟
作者单位:北京工业大学信息学部
基金项目:国家自然科学基金资助项目(61573030);
摘    要:针对外界环境的干扰及自身系统参数的不确定性对一类高阶非线性多智能体系统的影响,研究在领导跟随者网络模型下系统一致性的问题.该动力学系统中含有高阶积分器耦合未知非线性动力学和未知外部干扰,采用分布式自适应径向基函数(radial basis function,RBF)神经网络控制算法,确保神经网络对智能体非线性项进行在线逼近,滑模控制消除持续有界扰动等不确定项对稳定性的影响.首先设计出神经网络权值的自适应律,提出一种基于神经网络的自适应滑模控制协议,利用李雅普诺夫稳定性理论,证明该多智能体系统实现领导跟随一致性,并且最终有界跟踪误差的充分条件.在同质和异质多智能体2种条件下,仿真结果验证了提出方法的正确性.

关 键 词:多智能体系统  高阶非线性系统  RBF神经网络  滑模控制  有限时间一致  协同控制
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号