首页 | 本学科首页   官方微博 | 高级检索  
     


A numerical simulation study for the human passive thermal system
Authors:Eda Didem Yildirim  Baris Ozerdem
Affiliation:1. Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, USA;2. Department of Mechanical Engineering, Izmir Institute of Technology, Urla, 35430 Izmir, Turkey
Abstract:The objective of this study is to create a dynamic model representing a transient three-dimensional passive thermal model of the human body. The model is a multi-segmental, multi-layered representation of the human body with spatial subdivisions which simulates the heat transfer phenomena within the body and at its surface. In order to represent the mechanisms of heat transfer within the body, energy balance equations including conduction with adjacent tissue, heat storage, metabolic heat generation, and convective heat transfer due to the blood flow in the capillaries are taken into consideration for each tissue. The present model of the passive system accounts for the geometric and anatomic characteristics of the human body and considers the thermo-physical and the basal physiological properties of tissue materials. It is assumed that the body is exposed to combination of the convection, evaporation and radiation which are taken into account as boundary conditions when solving the passive thermal system equation. The model is capable of predicting human body temperature in any given environmental conditions. Finite difference solution scheme is used to find out the temperature distribution of human body. The results are compared with the experimental data of previous studies present in the literature. Consequently, the numerical results of present model show good agreement with the experimental data.
Keywords:Human body  Passive thermal model  Transient heat transfer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号