首页 | 本学科首页   官方微博 | 高级检索  
     

基于Tabu搜索的聚类算法研究
引用本文:钟将 吴中福 吴开贵 杨强. 基于Tabu搜索的聚类算法研究[J]. 计算机科学, 2005, 32(1): 172-174
作者姓名:钟将 吴中福 吴开贵 杨强
作者单位:重庆大学计算机学院,重庆,400030;重庆大学计算机学院,重庆,400030;重庆大学计算机学院,重庆,400030;重庆大学计算机学院,重庆,400030
基金项目:国家自然科学基金(No.60073047)
摘    要:聚类分析的两个基本任务是分析数据集中簇的数量以及这些簇的位置。大多数的聚类方法通常只关注后一个问题。为了在聚类数不确定的情况下实现聚类分析,本文提出了一种新的结合人工免疫网络和Tabu搜索的动态聚类算法—DCBIT。新算法主要包含两个阶段:先使用人工免疫网络算法获得一个候选聚类中心集,然后使用Tabu搜索在候选聚类中心集上实现动态聚类。仿真实验结果表明与现有方法相比,新方法具有更好的收敛概率和收敛速度。

关 键 词:动态聚类  人工免疫网络  Tabu搜索

A Novel Dynamic Clustering Algorithm Based on Tabu Search
ZHONG Jiang,WU Zhong-Fu,WU Kai-Gui,YANG Qinag Computer College of Chongqing University,Chongqing. A Novel Dynamic Clustering Algorithm Based on Tabu Search[J]. Computer Science, 2005, 32(1): 172-174
Authors:ZHONG Jiang  WU Zhong-Fu  WU Kai-Gui  YANG Qinag Computer College of Chongqing University  Chongqing
Affiliation:ZHONG Jiang,WU Zhong-Fu,WU Kai-Gui,YANG Qinag Computer College of Chongqing University,Chongqing 400030
Abstract:Cluster analysis aims at answering two main questions: how many clusters there are in the data set and where they are located. Usually, the traditional clustering algorithms only focus on the last problem. In order to solve the two problems at the same time, this paper proposes a novel dynamic clustering algorithm called DCBIT, which is based on the immune network and Tabu search. The algorithm includes two phases, it begins by running im- mune network algorithm to find a candidate clustering center set, and then it employs Tabu search to search the opti- mum number of clusters and the location of each cluster according to the candidate centers. Experimental results show that the hew algorithm has satisfied convergent probability and convergent speed.
Keywords:Dynamic clustering  Artifical immune network  Tabu search
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号