首页 | 本学科首页   官方微博 | 高级检索  
     

基于空洞卷积与特征增强的单阶段目标检测算法
引用本文:姜竣,翟东海. 基于空洞卷积与特征增强的单阶段目标检测算法[J]. 计算机工程, 2021, 47(7): 232-238,248. DOI: 10.19678/j.issn.1000-3428.0058315
作者姓名:姜竣  翟东海
作者单位:1. 西南交通大学 信息科学与技术学院, 成都 611756;2. 西藏大学 工学院, 拉萨 850000
基金项目:国家自然科学基金(61961038)。
摘    要:基于卷积神经网络目标检测算法的浅层特征图包含丰富的细节信息,但缺乏语义信息,而深层特征图则相反.为充分利用浅层和深层特征图特征,解决多尺度目标检测问题,提出一种新的单阶段目标检测算法(AFE-SSD).以SSD算法为基础,分别对该算法中相邻的2个特征图进行特征融合,从而丰富浅层特征层的语义信息.通过对并行空洞卷积机制进...

关 键 词:卷积神经网络  SSD算法  特征融合  空洞卷积  目标检测
收稿时间:2020-05-13
修稿时间:2020-06-16

Single-Stage Object Detection Algorithm Based on Dilated Convolution and Feature Enhancement
JIANG Jun,ZHAI Donghai. Single-Stage Object Detection Algorithm Based on Dilated Convolution and Feature Enhancement[J]. Computer Engineering, 2021, 47(7): 232-238,248. DOI: 10.19678/j.issn.1000-3428.0058315
Authors:JIANG Jun  ZHAI Donghai
Affiliation:1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China;2. School of Engineering, Tibet University, Lhasa 850000, China
Abstract:The shallow feature map of the object detection algorithm based on Convolutional Neural Network(CNN) lacks semantic information,while the deep feature map lacks detailed information.In order to fully exploit shallow and deep feature maps and solve the problem of multi-scale object detection,a single-stage object detection algorithm based on dilated convolution and feature enhancement is proposed.Constructed based on the Single Shot MultiBox Detector(SSD) algorithm,the proposed algorithm performs feature fusion on the two adjacent feature maps of SSD to enrich the semantic information of the shallow feature layer.Then the mechanism of parallel dilated convolution is improved.A multi-scale feature extraction module is constructed,and the fused feature map is input into the multi-scale feature extraction module.The operation not only enriches the multi-scale information of the feature map,but also enhances the feature extraction capability of the backbone network.Experimental results on the PASCAL VOC2007 test set show that the mAP of the AFE-SSD algorithm is 79.8% and a detection speed of 58.8 frame/s.Compared with SSD and DSSD algorithms,the proposed algorithm improves the mAP by 2.4 and 1.2 percentage points respectively.The effectiveness of the proposed feature fusion method and multi-scale extraction module is verified.
Keywords:Convolutional Neural Network(CNN)  SSD algorithm  feature fusion  dilated convolution  object detection  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号