首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征融合与双模板嵌套更新的孪生网络跟踪算法
引用本文:任立成,杨嘉棋,魏宇星,张建林. 基于特征融合与双模板嵌套更新的孪生网络跟踪算法[J]. 计算机工程, 2021, 47(7): 239-248. DOI: 10.19678/j.issn.1000-3428.0058437
作者姓名:任立成  杨嘉棋  魏宇星  张建林
作者单位:1. 中国科学院光电技术研究所, 成都 610209;2. 中国科学院大学 计算机科学与技术学院, 北京 100049
基金项目:国家重点研发计划(G158207)。
摘    要:为提高全卷积孪生网络SiamFC在复杂场景下的识别和定位能力,提出一种基于多响应图融合与双模板嵌套更新的实时目标跟踪算法.使用深度ResNet-22替换AlexNet作为骨干网络以提升网络特征提取性能,建立强识别能力的骨干语义分支.在ResNet-22的浅层使用高分辨率特征,构造强定位能力的浅层位置分支,计算并融合两个...

关 键 词:孪生网络  目标跟踪  ResNet-22结构  语义分支  位置分支  双模板嵌套更新
收稿时间:2020-05-26
修稿时间:2020-06-30

Tracking Algorithm Using Siamese Network Based on Feature Fusion and Dual-Template Nested Update
REN Licheng,YANG Jiaqi,WEI Yuxing,ZHANG Jianlin. Tracking Algorithm Using Siamese Network Based on Feature Fusion and Dual-Template Nested Update[J]. Computer Engineering, 2021, 47(7): 239-248. DOI: 10.19678/j.issn.1000-3428.0058437
Authors:REN Licheng  YANG Jiaqi  WEI Yuxing  ZHANG Jianlin
Affiliation:1. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China;2. School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:In order to improve the recognition and positioning performance of the fully convolutional Siamese network(SiamFC) in complex scenarios,a real-time visual tracking algorithm with fused multiple response graphs and dual-template nested update mechanism is proposed.The algorithm employs the deep network,ResNet-22,to replace AlexNet as the backbone network for stronger feature extraction ability,and the semantic branch of backbone with enhanced recognition ability is built.The high-resolution feature is used in the shallow layer of ResNet-22 to construct the shallow position branch with strong positioning ability.Then the responses of the two branches are calculated and fused.In addition,the templates of the two branches are updated by using a high-confidence dual-template nested update mechanism to adapt to the changes in the appearance and position of the target.Experimental results on the datasets of OTB2015 and VOT2016 show that the algorithm is more stable than tracking algorithms based on SiamFC,SiamDW and other networks in the scenarios with Fast Motion(FM) and Occlusion(OCC).At the same time,the algorithm runs at the speed of 34 frame/s,providing required real-time performance.
Keywords:Siamese network  target tracking  ResNet-22 structure  semantic branch  location branch  dual-template nested update  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号