首页 | 本学科首页   官方微博 | 高级检索  
     


Conflict-free star-access in parallel memory systems
Affiliation:1. Department of Administrative Management, Jinan University, Guangzhou 510632, People’s Republic of China;2. Department of Computer, Guangdong University of Finance, Guangzhou 510520, People’s Republic of China
Abstract:We study conflict-free data distribution schemes in parallel memories in multiprocessor system architectures. Given a host graph G, the problem is to map the nodes of G into memory modules such that any instance of a template type T in G can be accessed without memory conflicts. A conflict occurs if two or more nodes of T are mapped to the same memory module. The mapping algorithm should: (i) be fast in terms of data access (possibly mapping each node in constant time); (ii) minimize the required number of memory modules for accessing any instance in G of the given template type; and (iii) guarantee load balancing on the modules. In this paper, we consider conflict-free access to star templates, i.e., to any node of G along with all of its neighbors. Such a template type arises in many classical algorithms like breadth-first search in a graph, message broadcasting in networks, and nearest neighbor based approximation in numerical computation. We consider the star-template access problem on two specific host graphs—tori and hypercubes—that are also popular interconnection network topologies. The proposed conflict-free mappings on these graphs are fast, use an optimal or provably good number of memory modules, and guarantee load balancing.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号