首页 | 本学科首页   官方微博 | 高级检索  
     


System modeling of an air-independent solid oxide fuel cell system for unmanned undersea vehicles
Affiliation:1. Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China;2. 95486 People׳s Liberation Army Troops, Chengdu 610077, China;1. Instituto Nacional de Técnica Aeroespacial (INTA), Ctra. S. Juan-Matalascañas, km. 34, 21130, Mazagón (Huelva), Spain;2. Universidad de Sevilla, Escuela Técnica Superior de Ingeniería, Departamento de Ingeniería de Sistemas y Automática, Camino de los Descubrimientos, s/n, 41092, Sevilla, Spain;3. Commonwealth Scientific and Industrial Research Organization (CSIRO), Data61, Robotics and Autonomous Systems, QCAT, 1 Technology Court, Pullenvale, QLD 4069, Australia;1. Interdisciplinary Center for Scientific Computing (IWR), Optimization in Robotics & Biomechanics (ORB), University of Heidelberg, Germany;2. Theoretical Neuroscience Group, Department Psychology, Philipps-University Marburg, Germany
Abstract:To examine the feasibility of a solid oxide fuel cell (SOFC)-powered unmanned undersea vehicle (UUV), a system level analysis is presented that projects a possible integration of the SOFC stack, fuel steam reformer, fuel/oxidant storage and balance of plant components into a 21-in. diameter UUV platform. Heavy hydrocarbon fuel (dodecane) and liquid oxygen (LOX) are chosen as the preferred reactants. A maximum efficiency of 45% based on the lower heating value of dodecane was calculated for a system that provides 2.5 kW for 40 h. Heat sources and sinks have been coupled to show viable means of thermal management. The critical design issues involve proper recycling of exhaust steam from the fuel cell back into the reformer and effective use of the SOFC stack radiant heat for steam reformation of the hydrocarbon fuel.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号