首页 | 本学科首页   官方微博 | 高级检索  
     


Development of new and validation of existing convection correlations for rooms with displacement ventilation systems
Affiliation:1. Department of Architecture, Zhejiang, University, Zijingang Campus, Hangzhou 310058, China;2. Department of Building Science, Tsinghua University, Beijing 100084, China
Abstract:Building airflow, thermal, and contaminant simulation programs need accurate models for the surface convective boundary conditions. This is, especially, the case for displacement ventilation (DV) systems, where convective buoyancy forces at room surfaces significantly affect the airflow pattern and temperature and contaminant distributions. Nevertheless, for DV, as a relatively new ventilation system, the convective correlations are adopted from more traditional mixing ventilation correlations, or non-existent. In this study, the existing recommended correlations are validated in a full-scale experimental facility representing an office space. In addition, new correlations are developed for floor surfaces because the current literature does not provide necessary correlations, even though, the floor surface is responsible for >50% of the total convective heat transfer at the envelope. The convective correlations are typically functions of a surface-air temperature difference, airflow parameters, and characteristic room dimensions. Validation results show that the floor convection correlations expressed as a function of volume flow rate are much stronger than the correlations expressed as a function of a temperature difference between the surface and local air. Consequently, the new convection correlation for floor surfaces is a function of the number of hourly room air changes (ACH). This correlation also takes into account buoyant effects from local floor heat patches. Experimental data show that the existing correlation can be successfully applied to vertical and ceiling surfaces in spaces with DV diffuser(s). Overall, the new and the existing convection correlations are tabulated for use in building simulation programs, such as annual energy analyses or computational fluid dynamics.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号