首页 | 本学科首页   官方微博 | 高级检索  
     


Quasi-static crack tip fields in rate-sensitive FCC single crystals
Authors:P BISWAS  R NARASIMHAN
Affiliation:1.Global General Motors R&D, India Science Lab, GM Technical Centre (India),Bangalore,India;2.Department of Mechanical Engineering,Indian Institute of Science,Bangalore,India
Abstract:In this work, the effects of loading rate, material rate sensitivity and constraint level on quasi-static crack tip fields in a FCC single crystal are studied. Finite element simulations are performed within a mode I, plane strain modified boundary layer framework by prescribing the two term (K − T) elastic crack tip field as remote boundary conditions. The material is assumed to obey a rate-dependent crystal plasticity theory. The orientation of the single crystal is chosen so that the crack surface coincides with the crystallographic (010) plane and the crack front lies along 10`1]]10\overline 1] direction. Solutions corresponding to different stress intensity rates (K)\dot]\dot{{K}}, T-stress values and strain rate exponents m are obtained. The results show that the stress levels ahead of the crack tip increase with (K)\dot]\dot{{K}} which is accompanied by gradual shrinking of the plastic zone size. However, the nature of the shear band patterns around the crack tip is not affected by the loading rate. Further, it is found that while positive T-stress enhances the opening and hydrostatic stress levels ahead of crack tip, they are considerably reduced with imposition of negative T-stress. Also, negative T-stress promotes formation of shear bands in the forward sector ahead of the crack tip and suppresses them behind the tip.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号