Abstract: | In this article, Landsat TM images acquired during the same season from both 1984 and 1997 were analysed for urban built-up land change detection in Beijing, China, where great changes have taken place during the recent decades. To reduce the spectral confusion between urban 'built-up' and rural 'non built-up' land cover categories, we propose a new structural method based on road density combined with spectral bands for change detection. The road density represents one type of structural information while the multiple Landsat TM bands represent spectral information. Road density maps for both dates were produced using a gradient direction profile analysis (GDPA) algorithm and then integrated with spectral bands. Results from the spectral-structural postclassification comparison (SSPCC) and spectral-structural image differencing (SSID) methods were evaluated and compared with spectral-only change detection methods. The proposed SSPCC method greatly reduced spectral confusion and increased the accuracy of land cover classification compared with spectral classification, which in turn improved the change detection results. This article also shows that the SSID change detection result complemented spectral band differencing by detecting areas with greater structural changes, some of which were missed, by spectral band differencing. |