首页 | 本学科首页   官方微博 | 高级检索  
     


Hybrid learning-based digital twin for manufacturing process: Modeling framework and implementation
Affiliation:1. Xidian University, Xi''an, China;2. KTH Royal Institute of Technology, Stockholm, Sweden;3. University of Patras, Patras, Greece;4. Technical University of Berlin, Berlin, Federal Republic of Germany;1. School of Mechatronic Engineering, Harbin Institute of Technology, Harbin 150001, China;2. Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong;1. The College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, China;2. The China Academy of Launch Vehicle Technology, China;3. The 38th Research Institute, China Electronic Technology Corporation, China;1. BIBA – Bremer Institut für Produktion und Logistik GmbH at the University of Bremen, Hochschulring 20, 28359, Bremen, Germany;2. Cellumation GmbH, Kleiner Ort 7, 28357, Bremen, Germany;3. University of Bremen, Faculty of Production Engineering, Badgasteiner Straße, 28359, Bremen, Germany
Abstract:Digital twin (DT) and artificial intelligence (AI) technologies are powerful enablers for Industry 4.0 toward sustainable resilient manufacturing. Digital twins of machine tools and machining processes combine advanced digital techniques and production domain knowledge, facilitate the enhancement of agility, traceability, and resilience of production systems, and help machine tool builders achieve a paradigm shift from one-time products provision to on-going service delivery. However, the adaptability and accuracy of digital twins at the shopfloor level are restricted by heterogeneous data sources, modeling precision as well as uncertainties from dynamical industrial environments. This article proposes a novel modeling framework to address these inadequacies by in-depth integrating AI techniques and machine tool expertise using aggregated data along the product development process. A data processing procedure is constructed to contextualize metadata sources from the design, planning, manufacturing, and quality stages and link them into a digital thread. On this consistent data basis, a modeling pipeline is presented to incorporate production and machine tool prior knowledge into AI development pipeline, while considering the multi-fidelity nature of data sources in dynamic industrial circumstances. In terms of implementation, we first introduce our existing work for building digital twins of machine tool and manufacturing process. Within this infrastructure, we developed a hybrid learning-based digital twin for manufacturing process following proposed modeling framework and tested it in an external industrial project exemplarily for real-time workpiece quality monitoring. The result indicates that the proposed hybrid learning-based digital twin enables learning uncertainties of the interaction of machine tools and machining processes in real industrial environments, thus allows estimating and enhancing the modeling reliability, depending on the data quality and accessibility. Prospectively, it also contributes to the reparametrization of model parameters and to the adaptive process control.
Keywords:Digital twin  Digital shadow  Artificial intelligence  Machine tool  Smart manufacturing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号