首页 | 本学科首页   官方微博 | 高级检索  
     


Digital twin-driven manufacturing equipment development
Affiliation:1. School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, PR China;2. School of Mechanical Engineering, Shandong University, Jinan, PR China;3. Key Laboratory of High Efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education, Jinan, PR China;1. Xidian University, Xi''an, China;2. KTH Royal Institute of Technology, Stockholm, Sweden;3. University of Patras, Patras, Greece;4. Technical University of Berlin, Berlin, Federal Republic of Germany;1. State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China;2. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China;3. AVIC Shenyang Aircraft Corporation, Shenyang, 110850, China;1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China;2. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China;3. Hubei Longzhong Laboratory, Xiangyang 441000, China;1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China;3. School of Mechanical and Electrical Engineering, Shenyang Aerospace University, Shenyang 110136, China;1. School of Mechanical Engineering, Shandong University, Jinan 250061, PR China;2. Key Laboratory of High Efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education, Jinan 250061, PR China
Abstract:Currently, expectations of shorter time-to-market and improved product performance are placing greater demands on manufacturing companies. However, the optimization and redesign work between the design stage and the prototype design and manufacturing stage in the traditional product development process lengthens the required product development cycle time (which lasts up to several years in extreme cases). The manufacturing phase for the physical prototype of the product is especially time-consuming and costly. The above reasons make the common product development process increasingly unable to meet the demands of market needs. Motivated by this need, the digital twin (DT)-driven manufacturing equipment (ME) development method is studied in this paper. This method contains three main core elements of the design method based on axiomatic design (AD) theory, the construction of DT models related to ME development, and DT-based validation analysis. The advantage of this method is that it can incorporate the physical prototype manufacturing stage into the digital space with the high-fidelity model provided by the DT technology, which ensures the confidentiality of the design scheme validation while freeing it from the physical prototype stage. This avoids the cost of physical prototyping, shortens the product development cycle, and improves the efficiency of new ME development. At the end of this paper, a case study of the development of a virtual machining dynamic performance test bench (VM-TB) is carried out to show the implementation flow of this proposed method, and its operability and effectiveness are verified.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号