首页 | 本学科首页   官方微博 | 高级检索  
     

基于纹理差异视觉显著性的织物疵点检测算法
引用本文:李春雷,张兆翔,刘洲峰,廖亮,赵全军. 基于纹理差异视觉显著性的织物疵点检测算法[J]. 山东大学学报(工学版), 2014, 44(4): 1-8. DOI: 10.6040/j.issn.1672-3961.2.2013.344
作者姓名:李春雷  张兆翔  刘洲峰  廖亮  赵全军
作者单位:1. 中原工学院电子信息学院, 河南 郑州 450007;2. 北京航空航天大学计算机学院智能识别与图像处理实验室, 北京 100191
基金项目:国家自然科学基金资助项目(61202499,61379113);河南省基础与前沿技术研究计划资助项目(132300410163,142300410042)
摘    要:由于织物图像纹理多样化及疵点类别较多,为了更有效地检测织物疵点,结合织物图像特性及借鉴人类视觉感知机理,提出一种基于纹理差异视觉显著性模型的织物疵点检测算法。该算法首先对图像进行分块,计算各个图像块LBP(local binary pattern)纹理特征,与图像块平均纹理特征的相似度比较,进行显著度计算,从而有效突出了疵点区域。最后利用改进阈值分割算法,实现对疵点区域的定位。通过与已有视觉显著性模型进行比较,得出该算法更能有效地突出疵点区域;同时,分割结果与已有织物疵点检测算法相比发现,该算法具有更强的疵点检测及定位能力。

关 键 词:疵点检测  织物疵点  局部二值模式  纹理差异  分割  视觉显著性  
收稿时间:2013-04-30

A novel fabric defect detection algorithm based on textural differential visual saliency model
LI Chunlei,ZHANG Zhaoxiang,LIU Zhoufeng,LIAO Liang,ZHAO Quanjun. A novel fabric defect detection algorithm based on textural differential visual saliency model[J]. Journal of Shandong University of Technology, 2014, 44(4): 1-8. DOI: 10.6040/j.issn.1672-3961.2.2013.344
Authors:LI Chunlei  ZHANG Zhaoxiang  LIU Zhoufeng  LIAO Liang  ZHAO Quanjun
Affiliation:1. School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou 450007, Henan, China;2. School of Computer Science and Engineering, Beihang University, Beijing 100191, China
Abstract:In order to effectively detect defect for fabirc image with variety of defects and complex texture, a novel fabric defect detection scheme based on textural difference-based visual saliency model was proposed, which considered the characteristics of fabric image and human visual perception. First, the test image was split into image blocks, and textural feature was extracted using LBP operator for each image block. Second, saliency was calculated by comparing their textural feature with the average texture feature. Finally, the threshold segmentation algorithm was used to localize the defect region. Comparing with the current saliency model, the proposed saliency model could effectively distinguish the defect. In addition, segmentation scheme was superior to the current defect detection algorithm in detection and localization.
Keywords:fabric defect  defect detection  textural difference  segment  visual saliency  local binary pattern  
本文献已被 CNKI 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号