首页 | 本学科首页   官方微博 | 高级检索  
     

基于LDA主题模型的社会网络链接预测
引用本文:卢文羊,徐佳一,杨育彬. 基于LDA主题模型的社会网络链接预测[J]. 山东大学学报(工学版), 2014, 44(6): 26-31. DOI: 10.6040/j.issn.1672-3961.1.2014.116
作者姓名:卢文羊  徐佳一  杨育彬
作者单位:南京大学计算机软件新技术国家重点实验室, 江苏 南京 210023
基金项目:教育部新世纪优秀人才计划资助项目(NCET-11-0213);国家自然科学基金资助项目(61273257,61035003, 61021062);江苏省六大人才高峰计划资助项目(2013-XXRJ-018)
摘    要:针对传统社会网络链接预测方法忽视节点文本内容的问题,提出一种基于潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)主题模型的协作演化链接预测算法。算法利用LDA模型,对节点的文本内容进行分析,提取出每个节点的主题分布向量,利用分布向量的点积来衡量节点文本的相似性;然后将节点文本内容相似性矩阵与节点邻接矩阵相加,在此基础上计算节点之间的相似性;最后选取相似性最高的k个节点作为预测结果。实验结果表明该算法在网络图稀疏的情况下有较好的效果。

关 键 词:链接预测  网络演化  主题模型  潜在狄利克雷分配  社会网络  
收稿时间:2014-03-31

LDA-based link prediction in social network
LU Wenyang,XU Jiayi,YANG Yubin. LDA-based link prediction in social network[J]. Journal of Shandong University of Technology, 2014, 44(6): 26-31. DOI: 10.6040/j.issn.1672-3961.1.2014.116
Authors:LU Wenyang  XU Jiayi  YANG Yubin
Affiliation:State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, Jiangsu, China
Abstract:To address the problem of ignoring the text contents of nodes in social network link prediction methods, a Latent Dirichlet Allocation(LDA)-based collaborative evolutionary link prediction algorithm was proposed. The algorithm used LDA model to analyze the text content and abstracted a topic distribution vector for each node; The product of the topic distribution vectors was adopted to measure the similarity between the nodes' contents; Afterwards, the content similarity matrix was added to the adjacency matrix and the similarities between the nodes were computed consequently; At last, k most similar nodes were selected as the prediction result. The experimental results showed that the proposed algorithm achieved good prediction performance in sparse networks.
Keywords:network evolution  social network  link prediction  topic model  Latent Dirichlet Allocation  
本文献已被 CNKI 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号