首页 | 本学科首页   官方微博 | 高级检索  
     


Model selection, identification and validation in anaerobic digestion: a review
Authors:Donoso-Bravo Andres  Mailier Johan  Martin Cristina  Rodríguez Jorge  Aceves-Lara César Arturo  Vande Wouwer Alain
Affiliation:a Automatic Control Laboratory, University of Mons 31 Boulevard Dolez, B-7000 Mons, Belgium
b modelEAU, Département de génie civil et genie des eaux, Université Laval, 1065 av. de la Médecine, Québec (QC) G1V 0A6, Canada
c Department of Chemical Engineering, University of Santiago de Compostela, Spain
d Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates
e Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
f INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
g CNRS, UMR5504, F-31400 Toulouse, France
Abstract:Anaerobic digestion enables waste (water) treatment and energy production in the form of biogas. The successful implementation of this process has lead to an increasing interest worldwide. However, anaerobic digestion is a complex biological process, where hundreds of microbial populations are involved, and whose start-up and operation are delicate issues. In order to better understand the process dynamics and to optimize the operating conditions, the availability of dynamic models is of paramount importance. Such models have to be inferred from prior knowledge and experimental data collected from real plants. Modeling and parameter identification are vast subjects, offering a realm of approaches and methods, which can be difficult to fully understand by scientists and engineers dedicated to the plant operation and improvements. This review article discusses existing modeling frameworks and methodologies for parameter estimation and model validation in the field of anaerobic digestion processes. The point of view is pragmatic, intentionally focusing on simple but efficient methods.
Keywords:Anaerobic digestion   Modeling   Identification   Kinetic parameters   Sensitivity analysis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号