首页 | 本学科首页   官方微博 | 高级检索  
     


Continuous water treatment by adsorption and electrochemical regeneration
Authors:Mohammed F M  Roberts E P L  Hill A  Campen A K  Brown N W
Affiliation:a School of Chemical Engineering and Analytical Science, University of Manchester, The Mill, Oxford Road, Manchester M13 9PL, UK
b Arvia Technology Ltd, Liverpool Science Park Innovation Centre, 131 Mount Pleasant Liverpool L3 5TF, UK
Abstract:This study describes a process for water treatment by continuous adsorption and electrochemical regeneration using an air-lift reactor. The process is based on the adsorption of dissolved organic pollutants onto an adsorbent material (a graphite intercalation compound, Nyex®1000) and subsequent electrochemical regeneration of the adsorbent leading to oxidation of the adsorbed pollutant. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for adsorption of a sample contaminant, the organic dye Acid Violet 17. The adsorbent circulation rate, the residence time distribution (RTD) of the reactor, and treatment by continuous adsorption and electrochemical regeneration were studied to investigate the process performance. The RTD behaviour could be approximated as a continuously stirred tank. It was found that greater than 98% removal could be achieved for continuous treatment by adsorption and electrochemical regeneration for feed concentrations of up to 300 mg L−1. A steady state model has been developed for the process performance, assuming full regeneration of the adsorbent in the electrochemical cell. Experimental data and modelled predictions (using parameters for the adsorbent circulation rate, adsorption kinetics and isotherm obtained experimentally) of the dye removal achieved were found to be in good agreement.
Keywords:Adsorption  Electrochemical regeneration  Graphite intercalation compound  GIC  Acid violet  Residence time distribution
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号