首页 | 本学科首页   官方微博 | 高级检索  
     

基于各向异性全变分的迭代滤波算法
引用本文:芦碧波,王乐蓉,郑艳梅,王永茂,李晓莹,秦钰翔. 基于各向异性全变分的迭代滤波算法[J]. 图学学报, 2018, 39(2): 186. DOI: 10.11996/JG.j.2095-302X.2018020186
作者姓名:芦碧波  王乐蓉  郑艳梅  王永茂  李晓莹  秦钰翔
作者单位:1. 河南理工大学计算机科学与技术学院,河南 焦作 454000;2. 广东省数据科学工程技术研究中心,广东 广州 510631
基金项目:国家自然科学基金项目(U1404103);河南省教育厅科学技术研究重点项目(14A520029,16A520053);河南理工大学创新型科研团队项目(T2014-3);河南理工大学博士基金项目(B2016-40)
摘    要:空间邻近度和像素值相似度的双边滤波(BF)器在滤波时,由于其值域滤波核系数的计算易受到噪声的干扰,在噪声水平较大时,直接使用噪声图像来指导核函数权值计算的方案不可行。为此,提出一种结合各向异性全变分和BF 的图像去噪算法,将各向异性全变分算法与BF 算法相结合,首先利用各向异性全变分算法对噪声图像进行处理,得到一幅边缘结构信息较为丰富的结果图像,接着将该结果图像作为BF 算法的引导图像来指导值域滤波核系数的计算,为保证算法的稳定性,对上述过程进行迭代处理。此外,为提高各向异性全变分算法的计算效率,引入了Split Bregman迭代算法进行加速处理。实验表明,该算法能在较好去噪的同时,保留较多的边缘结构信息。

关 键 词:图像去噪  双边滤波  各向异性全变分算法  SplitBregman迭代方法  结构保持能力  

An Iterative Image Filter Based on Anisotropic Total Variation
LU Bibo,WANG Lerong,ZHENG Yanmei,WANG Yongmao,LI Xiaoying,QIN Yuxiang. An Iterative Image Filter Based on Anisotropic Total Variation[J]. Journal of Graphics, 2018, 39(2): 186. DOI: 10.11996/JG.j.2095-302X.2018020186
Authors:LU Bibo  WANG Lerong  ZHENG Yanmei  WANG Yongmao  LI Xiaoying  QIN Yuxiang
Affiliation:1. College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo Henan 454000, China;2. Guangdong Engineering Research Center for Data Science, Guangzhou Guangdong 510631, China
Abstract:Spatial proximity and similarity of the pixel values of bilateral filter in the filter based onthe calculation of the range of filter kernel coefficient is susceptible to noise interference. When thenoise level is high, the direct use of noise image to guide the kernel weight computation program isnot feasible. Therefore, in this paper, the anisotropic total variation and bilateral filtering arecombined. Firstly, the image is processed by the anisotropic total variation model, and the resultimage with rich edge structure information is obtained. Then the calculation results of image as aguide bilateral filtering image to guide the range of filter kernel coefficient. In order to ensure thestability of the algorithm, the above process is iterated. In addition, in order to improve thecomputational efficiency of the anisotropic total variation model, the Split Bregman iterativealgorithm is introduced to accelerate the computation. The experimental results show that theproposed algorithm can preserve more edge information while denoising.
Keywords:image denoising,bilateral filter,anisotropic total variation,Split Bregman iterative method  structure preserve capability,
点击此处可从《图学学报》浏览原始摘要信息
点击此处可从《图学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号